Question Number	Answer	Additional Guidance	Mark
1(a)	(QWC - Take into account quality of written communication when awarding the following points) 1. Idea that in the rER insulin is folded e.g. forms \{3-D shape, secondary / tertiary structure \} ; 2. idea of insulin being packaged into (transport) vesicles by the rER ; 3. vesicles \{ move to / fuse with / eq \} the Golgi apparatus / vesicles (fuse to) form the Golgi apparatus ; 4. idea of insulin being changed in Golgi apparatus ; 5. idea of insulin being transferred in (secretory) vesicles from the Golgi apparatus to the cell (surface) membrane ; 6. vesicles (containing insulin) fuse with cell (surface) membrane / exocytosis ;	QWC emphasis on logical sequence ACCEPT Golgi and protein instead of insulin 4.IGNORE folded, processed ACCEPT modified, described change e.g. add / remove sugars, glycosides, carbohydrate	
			(4)

Question Number	Answer	Mark
$\mathbf{1 (b) (i)}$	C unspecialised cells that can differentiate to give rise to almost any type of cell in the body, excluding totipotent cells;	(1)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (b) (\text { (ii) }}$	1. idea of stimulus e.g. chemical ; 2. idea that some genes are \{ active / switched on / expressed \};	2. IGNORE genes being 'turned on' 3enes ;	
4. mRNA is \{translated / used\} to produce protein ; 5. idea that this protein modifies cell OR idea that this protein determines \{ cell structure / function \} ;	(4)		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 ~ (a) ~}$	1. enotype AND gametes of parents shown; 2. genotypes of possible children correctly shown; 3. genotypes clearly matched to phenotypes of possible children; 4. (probability $=) ~$ $1 / 4$ $25 \% / 1$ in $4 / 0.25 ;$	1. gametes can be shown on Punnett Square	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 ~ (b) ~}$	1. method for obtaining sample from baby described e.g. cheek swab, blood sample, heel prick, biopsy\} ; 2. idea of extracting DNA (from cells); 3. test for presence of \{normal / recessive / mutant / defective / MLD / eq\} \{gene / allele\};	NOT Mp 1 and 2 if chorionic villus, amniocentesis, pre-implantation, etc	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 ~ (c) (i) ~}$	1. idea of copy of \{normal / functioning / eq\} \{gene / allele\} now in cells; 2. reference to transcription or translation of the \{gene / allele\} ;	1. NOT replaces / repairs faulty gene IGNORE dominant ACCEPT correct	
3. idea that (normal) protein produced / cells function normally / eq ; 4. idea that stem cells produce more cells ;	4. ACCEPT mitosis, cell division	(3)	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 ~ (c) (i i) ~}$	1. idea of control (to see if the treatment made a difference);	1. ACCEPT valid comparison IGNORE unqualified comparison	
2.idea that other variables controlled e.g. shared genes, environment;	2. ACCEPT similar genes NOT genetically identical	(2)	

Question Number	Answer	Additional Guidance	Mark
2 (d)	1. idea that risk from gene therapy very small ; 2. idea that consequences of the disorder more certain than risks of the therapy ; 3. idea that consequences of the disorder known while risks of the therapy are not known ; 4. idea that parents do not want their child to suffer the disorder e.g. will do anything to \{treat / prevent / eq\} the disorder, there is no other treatment available ; 5. idea that trial may lead to effective treatment e.g. could benefit others ;	2. ACCEPT more benefits than risks / idea that severity of the disorder makes it worth the risk 4. ACCEPT give the child a better quality of life / the best possible chance of a normal life / eq	(2)

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	Answer	Additional guidance	Mark
3(a)	$\begin{array}{l}\text { 1. idea of increasing cell number; } \\ \text { 2. idea of replacing \{damaged / dead \} cells } \\ \text { OR } \\ \text { idea of repairing (damaged) tissue ; } \\ \text { 3. to produce genetically identical cells ; }\end{array}$	$\begin{array}{l}\text { 1. ACCEPT 'production of new } \\ \text { cells' and cells divide multiply } \\ \text { or replicate }\end{array}$	
2. NOT growth or repair of cells			

Question Number	Answer	Additional guidance	Mark
3(b)(i)	Stage 2. \{ hydrochloric / acetic / ethanoic \} AND \{ macerate / soften / separate / break up / eq \} ; Stage 3. Toluidine (blue) / orcein / Feulgen / Schiff's (reagent) ; Stage 4. Slide AND \{ coverslip / cover slide \} ;	Stage 2. ACCEPT HCI, ACCEPT break down Stage 3. ACCEPT ethanoic /acetic / proprionic orcein. ACCEPT unambiguous spellings that couldn't be anything other than the name of a stain	(3)

Question Number	Answer	Additional guidance	Mark
3(b)(ii)	1. \{ safety goggles / safety glasses / gloves \} when handling \{ acid / stain \} 2. care (with scalpel) when cutting root tip 3. care with slide when squashing root tip ;	IGNORE lab coats protecting clothes	(1)
Question Number	Answer	Additional guidance	Mark
3(c)	(QWC- Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. idea of chemical stimulus e.g. signal protein, growth substance ; 2. idea of some genes \{active / inactive / eq\} ; 3. idea of transcription of active genes ; 4. mRNA translated / \{ polypeptide / protein \} made / eq ; 5. idea of cell \{structure / function\} determined / cell modified e.g. lignin synthesised;	QWC emphasis is logical sequence 1. A EPT hormone 2. ACCEPT ge s switched on / off 3. A EPT mRNA synthesised	(4)

Question Number	Answer	Additional guidance		
$\mathbf{3 (d) (i)}$	chiasmata / pairing of homologous chromosomes / synapsis /formation of bivalents ;	IGNORE non-observable processes that are different		
ACCEPT crossing over				
ACCEPT spelling of chiasmata				
as chaismata or phonetically				
correct			\quad	(1)
:---				

Question Number	Answer	Additional guidance	Mark
$\mathbf{3 (d) (i i)}$	1. crossing over and \{ independent/ random\} assortment; 2. description of crossing over as swapping over sections of 3. description of independent assortment of maternal and paternal chromosomes ; 4. consequence described e.g. produces recombinants or new combinations of alleles ;	1.t s mark can be awarded if there are no correct details provided for either process	

Question Number	Answer	Additional Comments	Mark
4(a)	1. idea of using part of the seedling ; 2. idea of using agar ; 3. (agar contains) growth substances / hormones / eq ; 4. Idea of using aseptic technique ; 5. Idea of covering the top of the container to prevent contamination OR loss of water ; 6. Idea of supplying light ; 7. allow a suitable length of time for growth e.g. 1 to 6 weeks ; 8. look for \{ roots / leaves / (complete) plant \} forming ;	1. CCEPT cuttings, explants IGNORE cells unqualified 3. CCEPT named plant growth substance	(4)
Question Number	Answer	Additional Comments	Mark
4(b) (i)	1. percentage of seedlings (showing totipotency) decreases as age increases up to 21 days / negative correlation up to 21 days / eq ; 2. as age increases \{ after 21 / from 2128 / at 28\} days percentage of seedlings showing totipotency increases / eq ; 3. 28 days is an anomalous result ; 4. credit correct manipulation of the data ;	4. Some examples ar shown below IGNORE calculated percentage of percentage	(2)

Question Number	Answer	Additional Comments	Mark
4(b) (ii)	1.\{ repeats / larger number of seedlings \} \{ at each age / in each group \} / eq ; 2.more ages of seedlings used / use seedlings older than 28 days / test 35 day old seedlings / eq ; repeat 28-day group / repeat any anomalous results / eq ;1. ACCEPT repeated the whole experiment	(2)	

Question Number	Answer	Additional Comments	Mark
$\mathbf{4 (c) (i)}$	as phenol concentration increases from \{ 7 to 21 / 7 to 14 / 14 to 21 \} days, percentage of seedlings showing totipotency decreases / negative correlation up to 21 days / eq ;		

Question Number	Answer	Additional Comments	Mark
$\mathbf{4 (c) (i i)}$	(as phenol concentration increases) at 28 days percentage of seedlings showing totipotency increases / eq ;	ACCEPT reference to after 21 days	

Question Number	Answer	Additional Comments	Mark
4(d)	1. totipotent cells can \{ give rise to / differentiate to become \} \{ any cell / extra embryonic tissues / eq \} ; 2. pluripotent cannot \{ give rise to / differentiate to become \} \{ all cells in the body / extra embryonic tissues / eq \} ; 3. idea that only totipotent cells can give rise to other totipotent cells ; 4. idea that totipotent cells can give rise to an entire human being, pluripotent cells cannot ;	NOT 'turns into', 'becomes', ‘develops into' but penalise once only 1. ACCEPT specialised for differentiated $1 \& 2$ IGNORE reference to embryonic cells/tissues unless it makes the response incorrect, ACCEPT placental cells/tissues 2. ACCEPT can give rise to most cells	(2)

